Einfache harmonische Bewegung

Die einfache harmonische Bewegung (SHM-Simple Harmonic Motion) ist die einfachste Art der Schwingung bzw. Oszillation. Wenn die Rückstellkraft, die ein Objekt in seine Gleichgewichtslage bringt, direkt proportional zu der Verschiebung aus dem Gleichgewicht ist, bewegt sich das Objekt entsprechend der SHM.

Das bekannteste Beispiel für SHM ist die Bewegung einer Masse, die an einer idealen Feder hängt und dem Hookeschen Gesetz gehorcht – wie in dieser Simulation. In diesem Fall kann man all die chaotischen Bedingungen der realen Welt (wie die Reibung der Feder oder den Luftwiderstand) ignorieren und sich auf die Hauptakteure der Bewegung konzentrieren: die Rückstellkraft und die daraus resultierende Sinusform der Bewegung. Unter diesen Bedingungen („Idealbedingungen“ genannt) schwingt eine Masse, die einmal in Bewegung gesetzt wurde, unendlich lang weiter.

Der maximale Abstand zwischen der Masse und ihrer Gleichgewichtsposition wird als Amplitude, A, bezeichnet.